The main challenge for fine-grained few-shot image classification is to learn feature representations with higher inter-class and lower intra-class variations, with a mere few labelled samples. Conventional few-shot learning methods however cannot be naively adopted for this fine-grained setting -- a quick pilot study reveals that they in fact push for the opposite (i.e., lower inter-class variations and higher intra-class variations). To alleviate this problem, prior works predominately use a support set to reconstruct the query image and then utilize metric learning to determine its category. Upon careful inspection, we further reveal that such unidirectional reconstruction methods only help to increase inter-class variations and are not effective in tackling intra-class variations. In this paper, we for the first time introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations. In addition to using the support set to reconstruct the query set for increasing inter-class variations, we further use the query set to reconstruct the support set for reducing intra-class variations. This design effectively helps the model to explore more subtle and discriminative features which is key for the fine-grained problem in hand. Furthermore, we also construct a self-reconstruction module to work alongside the bi-directional module to make the features even more discriminative. Experimental results on three widely used fine-grained image classification datasets consistently show considerable improvements compared with other methods. Codes are available at: https://github.com/PRIS-CV/Bi-FRN.
translated by 谷歌翻译
Existing Temporal Action Detection (TAD) methods typically take a pre-processing step in converting an input varying-length video into a fixed-length snippet representation sequence, before temporal boundary estimation and action classification. This pre-processing step would temporally downsample the video, reducing the inference resolution and hampering the detection performance in the original temporal resolution. In essence, this is due to a temporal quantization error introduced during the resolution downsampling and recovery. This could negatively impact the TAD performance, but is largely ignored by existing methods. To address this problem, in this work we introduce a novel model-agnostic post-processing method without model redesign and retraining. Specifically, we model the start and end points of action instances with a Gaussian distribution for enabling temporal boundary inference at a sub-snippet level. We further introduce an efficient Taylor-expansion based approximation, dubbed as Gaussian Approximated Post-processing (GAP). Extensive experiments demonstrate that our GAP can consistently improve a wide variety of pre-trained off-the-shelf TAD models on the challenging ActivityNet (+0.2% -0.7% in average mAP) and THUMOS (+0.2% -0.5% in average mAP) benchmarks. Such performance gains are already significant and highly comparable to those achieved by novel model designs. Also, GAP can be integrated with model training for further performance gain. Importantly, GAP enables lower temporal resolutions for more efficient inference, facilitating low-resource applications. The code will be available in https://github.com/sauradip/GAP
translated by 谷歌翻译
Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection (TAD) to new classes. The former adapts a pretrained vision model to a new task represented by as few as a single video per class, whilst the latter requires no training examples by exploiting a semantic description of the new class. In this work, we introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD by leveraging few-shot support videos and new class names jointly. To tackle this problem, we further introduce a novel MUlti-modality PromPt mETa-learning (MUPPET) method. This is enabled by efficiently bridging pretrained vision and language models whilst maximally reusing already learned capacity. Concretely, we construct multi-modal prompts by mapping support videos into the textual token space of a vision-language model using a meta-learned adapter-equipped visual semantics tokenizer. To tackle large intra-class variation, we further design a query feature regulation scheme. Extensive experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET outperforms state-of-the-art alternative methods, often by a large margin. We also show that our MUPPET can be easily extended to tackle the few-shot object detection problem and again achieves the state-of-the-art performance on MS-COCO dataset. The code will be available in https://github.com/sauradip/MUPPET
translated by 谷歌翻译
生长免费的在线3D形状集合决定了3D检索的研究。然而,已经进行了积极的辩论(i)最佳输入方式是触发检索,以及(ii)这种检索的最终用法场景。在本文中,我们为回答这些问题提供了不同的观点 - 我们研究了3D草图作为输入方式,并提倡进行检索的VR-Scenario。因此,最终的愿景是用户可以通过在VR环境中自由空气供电来自由地检索3D模型。作为新的3D VR-Sketch的首次刺入3D形状检索问题,我们做出了四个贡献。首先,我们对VR实用程序进行编码以收集3D VR-Sketches并进行检索。其次,我们从ModelNet收集了两个形状类别的第一套$ 167 $ 3D VR-SKETCHES。第三,我们提出了一种新的方法,以生成不同抽象级别类似人类的3D草图的合成数据集,以训练深层网络。最后,我们比较了常见的多视图和体积方法:我们表明,与3D形状到3D形状检索相比,基于体积点的方法在3D草图上表现出卓越的性能,并且由于稀疏和抽象的性质而显示出3D形状的检索3D VR-Sketches。我们认为,这些贡献将集体成为未来在此问题的尝试的推动者。 VR接口,代码和数据集可在https://tinyurl.com/3dsketch3dv上找到。
translated by 谷歌翻译
我们介绍了1,497个3D VR草图和具有较大形状多样性的椅子类别的3D形状对的第一个细粒数据集。我们的数据集支持草图社区的最新趋势,以细粒度的数据分析,并将其扩展到主动开发的3D域。我们争辩说最方便的草图场景,其中草图由稀疏的线条组成,并且不需要任何草图技能,事先培训或耗时的准确绘图。然后,我们首次将细粒度3D VR草图的场景研究为3D形状检索,作为一种新颖的VR素描应用程序和一个探索基础,以推动通用见解以告知未来的研究。通过实验在这个新问题上精心选择的设计因素组合,我们得出重要的结论以帮助跟进工作。我们希望我们的数据集能够启用其他新颖的应用程序,尤其是那些需要细粒角的应用程序,例如细粒度的3D形状重建。该数据集可在tinyurl.com/vrsketch3dv21上获得。
translated by 谷歌翻译
我们研究基于3D-VR-Sketch的细粒度3D形状检索的实际任务。此任务特别令人感兴趣,因为2D草图被证明是2D图像的有效查询。但是,由于域间隙,很难从2D草图中以3D形状的检索获得强劲的性能。最近的工作证明了3D VR素描在此任务上的优势。在我们的工作中,我们专注于3D VR草图中固有的不准确性造成的挑战。我们观察到,带有固定边缘值的三胞胎损失获得的检索结果,通常用于检索任务,包含许多无关的形状,通常只有一个或几个或几个具有与查询相似的结构。为了减轻此问题,我们首次在自适应边距值和形状相似性之间建立联系。特别是,我们建议使用由“拟合差距”驱动的自适应边距值的三重损失,这是在结构保护变形下的两个形状的相似性。我们还进行了一项用户研究,该研究确认这种拟合差距确实是评估形状结构相似性的合适标准。此外,我们介绍了202个VR草图的数据集,用于从内存而不是观察到的202个3D形状。代码和数据可在https://github.com/rowl1ng/structure-aware-aware-vr-sketch-shape-retrieval中找到。
translated by 谷歌翻译
已经提出了多个草图数据集,以了解人们如何绘制3D对象。但是,这样的数据集通常是小规模的,并且覆盖了一小部分对象或类别。此外,这些数据集包含大多来自专家用户的徒手草图,因此很难比较专家和新手用户的图纸,而这种比较对于告知对任何一个用户组的基于草图的界面更为有效的接口至关重要。这些观察结果激发了我们分析具有和没有足够绘图技能的人的不同程度的素描3D对象。我们邀请了70个新手用户和38位专家用户素描136 3D对象,这些对象是从多个视图中呈现的362张图像。这导致了3,620个徒手多视图草图的新数据集,在某些视图下,它们在其相应的3D对象上注册。我们的数据集比现有数据集大的数量级。我们在三个级别(即在空间和时间特征下以及跨越创建者组的内部和范围内)分析了三个级别的收集数据。我们发现,专业人士和新手的图纸在本质和外在的中风级别上显示出显着差异。我们在两个应用程序中演示了数据集的有用性:(i)徒手式的草图合成,(ii)将其作为基于草图的3D重建的潜在基准。我们的数据集和代码可在https://chufengxiao.github.io/differsketching/上获得。
translated by 谷歌翻译
基于单个草图图像重建3D形状是由于稀疏,不规则的草图和常规,密集的3D形状之间的较大域间隙而具有挑战性的。现有的作品尝试采用从草图提取的全局功能来直接预测3D坐标,但通常会遭受失去对输入草图不忠心的细节。通过分析3D到2D投影过程,我们注意到表征2D点云分布的密度图(即,投影平面每个位置的点的概率)可以用作代理,以促进该代理重建过程。为此,我们首先通过图像翻译网络将草图翻译成一个更有信息的2D表示,可用于生成密度映射。接下来,通过两个阶段的概率采样过程重建一个3D点云:首先通过对密度映射进行采样,首先恢复2D点(即X和Y坐标);然后通过在每个2D点确定的射线处采样深度值来预测深度​​(即Z坐标)。进行了广泛的实验,定量和定性结果都表明,我们提出的方法显着优于其他基线方法。
translated by 谷歌翻译
现有的时间动作检测(TAD)方法依赖于大型培训数据,包括细分级注释,仅限于在推理期间单独识别先前看到的课程。为每类兴趣收集和注释一个大型培训集是昂贵的,因此无法计算。零射TAD(ZS-TAD)通过启用预训练的模型来识别任何看不见的动作类别来解决这一障碍。同时,ZS-TAD的调查大大降低,ZS-Tad也更具挑战性。受零摄像图像分类的成功的启发,我们旨在解决更复杂的TAD任务。一种直观的方法是将现成的建议探测器与剪辑样式分类集成。但是,由于顺序定位(例如,提案生成)和分类设计,它很容易进行定位误差传播。为了克服这个问题,在本文中,我们通过视觉提示(陈旧)提出了一种新型的零射击时间动作检测模型。这种新颖的设计通过破坏介于两者之间的错误传播途径来有效地消除了定位和分类之间的依赖性。我们进一步介绍了分类和定位之间的相互作用机制,以改善优化。对标准ZS-TAD视频基准测试的广泛实验表明,我们的陈旧的表现明显优于最先进的替代方案。此外,我们的模型还与最近的强大竞争对手相比,在受到监督的TAD上还能产生卓越的成果。 Stale的Pytorch实现可从https://github.com/sauradip/stale获得。
translated by 谷歌翻译
事实证明,大规模的视觉和语言(V+L)预训练已被证明有效地增强了下游V+L任务。但是,当涉及时尚域时,现有的V+L方法是不足的,因为它们忽略了时尚V+L数据和下游任务的独特特征。在这项工作中,我们提出了一个以时尚为中心的新型V+L表示框架,被称为Fashionvil。它包含两个新型时尚特定的预训练任务,旨在使用时尚V+L数据利用两个内在属性。首先,与其他域仅包含单个图像文本对的其他域相比,时尚域中可能有多个图像。因此,我们提出了一项多视图对比学习任务,以将一个图像的可视化表示为另一个图像+文本的组成多模式表示。其次,时尚文本(例如,产品描述)通常包含丰富的细粒概念(属性/名词短语)。为了利用这一点,引入了伪归因于分类任务,以鼓励同一概念的学习的单峰(视觉/文本)表示。此外,时尚V+L任务唯一包含不符合常见的一流或两流体系结构的任务(例如,文本引导的图像检索)。因此,我们提出了一个灵活的,多功能的V+L模型体系结构,该体系结构由模态 - 静态变压器组成,以便可以灵活地适应任何下游任务。广泛的实验表明,我们的FashionVil在五个下游任务中实现了新的最新技术。代码可从https://github.com/brandonhanx/mmf获得。
translated by 谷歌翻译